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We aim at providing a comprehensive introduction to Support Vector Ma-
chines and their applications in computational finance. Based on the advances
of the statistical learning theory, one of the first SVM algorithms was pro-
posed in mid 90’s. Since then, they have drawn a lot of research interests both
in theoretical and application domains and have became the state-of-the-art
techniques in solving classification and regression problems. The reason for the
success is not only because of their sound theoretical foundation but also their
good generalization performance in many real applications. In this chapter,
we address the theoretical, algorithmic and computational issues and try our
best to make the article self-contained. Moreover, in the end of this chapter, a
case study on default prediction is also presented. We discuss the issues when
SVM algorithms are applied to bankruptcy prognosis such as how to deal
with the unbalanced dataset, how to tune the parameters to have a better
performance and how to deal with large scale dataset.

1 Introduction

Finance classification problems occur in credit scoring, company rating, and
many fields. One of the most important task is to predict bankruptcy before
the disaster. In the era of Basel Committee on Banking Supervision (Basel
IT), a powerful tool for bankruptcy prognosis can always help banks to reduce
their risks. On one hand, the tool must be precise with high accuracy, but
also easily adaptable to the bank’s objectives regarding the relation of false
acceptances (Type I error) and false rejections (Type IT error). The prognosis
has become even more important since the Basel II established borrowers’
rating as the crucial criterion for minimum capital requirements of banks.
The methods for generating rating figures have developed significantly over
the last 10 years [32].
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Parametric statistical models can be used for finance classification. The
first introduced model of this type was discriminant analysis (DA) for univari-
ate [4] and multivariate models [2]. After DA, the logit and probit approach
for predicting default were proposed in [39] and [42]. These approaches rely on
the a priori assumed functional dependence between risk of default and pre-
dictor. One of the weakest points of DA is that it requires a linear functional,
or a preshaped polynomial functional dependence. Such restrictions often fail
to meet the reality of observed data. Semi-parametric models as in [27] are
between conventional linear models and non-parametric approaches. Other
than that, nonlinear classification methods such as Support Vector Machines
(SVMs) or neural networks [52] and [3] are even stronger candidates to meet
these demands as they go beyond conventional discrimination methods. In
this chapter, we concentrate on providing a comprehensive introduction to
SVMs and their applications in bankruptcy prognosis.

In the last decade, significant advances have been made in support vector
machines (SVMs) both theoretically, by using statistical learning theory; as
well as algorithmically, by applying some optimization techniques [7, 18, 36,
38, 47, 49]. SVMs have been successfully developed and have become pow-
erful tools for solving data mining problems such as classification, regression
and feature selection. In classification problems, an SVM determine an opti-
mal separating hyperplane that classifies data points into different categories.
Here, “optimality” refers to the sense that the separating hyperplane has the
best generalization ability for unseen data points, based on statistical learning
theory. With the help of nonlinear kernel functions, SVMs can discriminate
between complex data patterns by generating a highly nonlinear separating
hyperplane. The nonlinear extension of SVMs makes them applicable to many
important real world problems such as character recognition, face detection,
analysis of DNA microarrays, breast cancer diagnosis and prognosis [8, 40],
and the problem of bankruptcy prognosis as we will see.

The goal of this chapter is to provide a comprehensive introduction to
SVMs and their applications in bankruptcy prognosis. The remainder of the
chapter is organized as follows. Section 2 introduces the basic ideas and the
typical formulation of SVM. Some variants of SVMs are discussed in Section 3
to solve problems of many kinds. Section 4 details some implementation issues
and techniques. We discuss solving SVMs in primal and dual forms. In Sec-
tion 5, to deal with real world problems, we talk about some practical issues
of using SVMs. In Section 6, we apply SVMs on a problem of bankruptcy
prognosis. Then, in Section 7, we summarize our conclusions.

2 Support Vector Machine Formulations
In this section, we first introduce the basic idea of SVM and give the formula-

tion of linear support vector machine. Even the linear version looks too simple
to be powerful enough for real applications, it has a non-trivial nonlinear ex-
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tension. The concept of nonlinear extension of SVM is a milestone for dealing
with nonlinear problems and it has a great influence on the machine learning
community in this couple of decades. All the details of nonlinear extension,
including the “kernel trick” and Mercer’s theorem, are introduced in this sec-
tion. In the end, we discuss the actual risk bound to show the insight behind
SVM induction.

2.1 The Formulation of Conventional Support Vector Machine

In this article, we mainly confine ourselves to binary classification problems,
which focus on classifying data into two classes. Given a dataset consisting of
m points in the n-dimensional real space R™, each with a class label y, +1 or
—1, indicating one of two classes, A, A_ C R™ where the point belongs, we
want to find the decision boundary between the two classes. For the multi-class
case, many strategies have been proposed. They either decompose the problem
into a series of binary classification or formulate it as a single optimization
problem. We will discuss this issue in Section 5. In notation, we use capital
boldface letters to denote a matrix, lower case boldface letters to denote a
column vector, and low case light face letters to denote scalars. The data
points are denoted by an m x n matrix A, where the i** row of the matrix
corresponds to the it" data point. We use a column vector x; to denote the
ith data point. All vectors indicate column vectors unless otherwise specified.
The transpose of a matrix M is denoted by M.

Primal Form of Conventional SVM

We start with a strictly linearly separable case, i.e. there exists a hyperplane
which can separate the data A, and A_. In this case we can separate the
two classes by a pair of parallel bounding planes:

wix+b=+1, (1)
wix+b=-1,

where w is the normal vector to these planes and b determines their location
relative to the origin. The first plane of (1) bounds the class A} and the
second plane bounds the class A_. That is,

wix+b>+1, Vxe A, @)
WTX+b§—1, Vxe A_.

According to the statistical learning theory [54], SVM achieves a better predic-
tion ability via maximizing the margin between two bounding planes. Hence,
the “hard margin” SVM searches for a separating hyperplane by maximizing
ﬁ. It can be done by means of minimizing 3 ||w||§ and the formulation
leads to a quadratic program as follows:
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HT%F = Margin ]|1_AZH7 = Margin

(a) linearly separable (b) non-linearly separable

Fig. 1. The illustration of linearly separable and non-linearly separable SVMs

1 2
mi ~|w 3
it 5 Wll2 (3)

st yi(wix;+b)>1, fori=1,2,...,m.
The linear separating hyperplane is the plane
wix+b=0, (4)

midway between the bounding planes (1), as shown in Figure 1(a). For the
linearly separable case, the feasible region of the above minimization problem
(3) is nonempty and the objective function is a quadratic convex function;
therefore, there exists an optimal solution, denoted by (w*, b*). The data
points on the bounding planes, w*Tx 4+ b* = +1, are called support vectors.
It is not difficult to see that, if we remove any point that is not a support
vector, the training result will remain the same. This is a nice property of
SVM learning algorithms. For the purpose of data compression, once we have
the training result, all we need to keep in our database are the support vectors.

If the classes are not linearly separable, in some cases, two planes may
bound the two classes with a “soft margin”. That is, given a nonnegative
slack vector variable € := (&1,...,&,), we would like to have:

wixi+b+&>41, Vxe Al 5)
wix;+b—-§&< -1, Vx;€A_.

The 1-norm of the slack vector variable &, >, &, is called the penalty term.
In principle, we are going to determine a separating hyperplane that not only
correctly classifies the training data, but also performs well on test data. We
depict the geometric property in Figure 1(b). With a soft margin, we can
extend equation (3) and produce the conventional SVM [54] as the following
formulation:
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Ly o -
i —||w C ; 6
s, IWIB+C D6 (6)
sty (wix +b)+&>1,
& >0, fore=1,2,...,m,
where C' > 0 is a positive parameter that balances the weight of the penalty

term > ", & and the margin maximization term %||W||§ Alternatively, we
can replace the penalty term by the 2-norm measure as follows:

. 1 9 o
Z C : 7
g JE O3 g
st yi(wixi+b)+6>1,
fori=1,2,....,m.

The 1-norm penalty is considered less sensitive to outliers than the 2-norm
penalty, therefore it receives more attention in real applications. However,
mathematically the 1-norm is more difficult to manipulate such as when we
need to compute the derivatives.

Dual Form of Conventional SVM

The conventional support vector machine formulation (6) is a standard convex
quadratic program [6, 37, 41]. The Wolfe dual problem of (6) is expressed as
follows:

m

m m
1
ackn Zizl 0= 5 2 D e x;) a

i=1 j=1

m
s.t. Zyiai =0,
i=1
0<a; <C fori=1,2,...,m,

where (x;,x;) is the inner product of x; and x;. The primal variable w is
given by:

w = Z YiQX; - (9)

a; >0

Each dual variable «; corresponds to a training point x;. The normal vector w
can be expressed in terms of a linear combination of training data points which
have corresponding positive dual variables «; (namely, the support vectors).
By the Karush-Kuhn-Tucker complementarity conditions [6, 37]:

0<C—ca; L &>0 , fori=1,2,...,m, (10)
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nonlinear pattern in data space approximate linear pattern in feature space

Fig. 2. The illustration of nonlinear SVM

we can determine b simply by taking any training point x;, such that i € I :=
{k| 0 < aj, < C} and obtain:

m

b=yi—w' X =yi— Z(yjaj<xj,xi>) : (11)
j=1

In the dual form, SVMs can be expressed by the form of inner product. It
implies that we only need the information of the inner product of the data
when expressing the formulation and decision function of SVM. This impor-
tant characteristic carries SVMs to their nonlinear extension in a simple way.

2.2 Nonlinear Extension of SVMs via Kernel Trick

In many cases, a dataset, as collected in a vector form full of attributes,
cannot be well separated by a linear separating hyperplane. However, it is
likely that the dataset becomes linearly separable after mapped into a higher
dimensional space by a nonlinear map. A nice property of SVM methodology
is that we do not even need to know the nonlinear map explicitly; still, we can
apply a linear algorithm to the classification problem in the high dimensional
space. The property comes from the dual form of SVM which can express the
formulation in terms of inner product of data points. By taking the advantage
of dual form, the “kernel trick” is used for the nonlinear extension of SVM.

Kernel Trick

From the dual SVM formulation (8), all we need to know is simply the inner
product between training data vectors. Let us map the training data points
from the input space R™ to a higher-dimensional feature space F by a non-
linear map @. The training data x in F becomes ®(x) € R’ where ¢ is the
dimensionality of the feature space F. Based on the above observation, if we
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know the inner product ®(x;)'d(x;) for all i,j = 1,2,...,m, then we can
perform the linear SVM algorithm in the feature space F. The separating
hyperplane will be linear in the feature space F but is a nonlinear surface in
the input space R™ (see Fig. 2).

Note that we do not need to know the nonlinear map @ explicitly. It can
be achieved by employing a kernel function. Let k(x,z) : R”® x R®™ — R be an
inner product kernel function satisfying Mercer’s condition [7, 14, 15, 18, 54],
positive semi-definiteness condition (see Definition 1). We can construct a
nonlinear map @ such that k(x;,x;) = &(x;) ' @(x;) where i,j = 1,2,...,m.
Hence, the linear SVM formulation can be used on @(x) in the feature space F
by replacing the (x;,x;) in the objective function of (8) with a nonlinear kernel
function k(x;,x;). The resulting dual nonlinear SVM formulation becomes:

m

1
max =3 Z Zyiyjaiajk(xia X;) (12)

acRm 4 . -
i=1 =1 j=1

m
s.t. Zyiai =0
i=1

0<q; <C fori=1,2,...,m.

m m

The nonlinear separating hyperplane is defined by the solution of (12) as
follows:

> (iask(x;, %) +b=0, (13)
j=1
where .
b=1y; — Z(yjajk(xj,xi)), iel:={kl0<ap<C}. (14)
j=1

The “kernel trick” makes the nonlinear extension of linear SVM possible with-
out knowing the nonlinear mapping explicitly. Whatever computation code
ready for linear SVM can also be modified to the nonlinear version easily
with a substitution of the inner product computation in the input space by
the inner product computation in the feature space.

Mercer’s Theorem

The basic idea of kernel trick is replacing the inner product between data
points by the kernel function k(x,z). However, it is not always possible for
a given function k(x,z) to reconstruct its corresponding nonlinear maps. We
can answer the question by the so-called Mercer’s condition [54]. We conclude
this section with Mercer’s condition and two examples of kernel function.

Definition 1 (Mercer’s condition). Let k(s,t) : R® x R® — R be a con-
tinuous symmetric function and X be a compact subset of R™. If
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| kst dsdt = 0, ¥ € (). (15)
XxX
where the Hilbert space lo(X) is the set of functions f such that

/ f(£)?dt < oo (16)
X
then the function k satisfies Mercer’s condition.

This is equivalent to say that the kernel matrix K(A, A) in our application is
positive semi-definite [18], where K(A, A);; = k(x;,x;) for 4,5 =1,2,...,m.
Below are two most popular kernel functions in real applications. The choice of
kernel functions may rely on the result of a cross-validation or model selection
procedure.

Ezxzample 1. Polynomial Kernel

k(x,2) = (X2 4+ b)", (17)
where d denotes the degree of the exponentiation.
Ezample 2. Gaussian (Radial Basis) Kernel

k(x,z) = e Px—zll3 (18)

where v is the width parameter of Gaussian kernel.

2.3 A Bound on Actual Risk

The main goal of the classification problem is to predict the label of new
unseen data points correctly. That is, we seek for a classifier f(x,«a) with
output values 1 and -1 that can minimize the following test error:

R(o) = [ 3lu= f(x.)ldP(x.p). (19)

where x is an instance and y is the class label of x, with (x,y) drawn from some
unknown probability distribution P(x,y), and « is an adjustable parameter of
f- The error, so called the actual risk, in which we are interested can represent
the true mean error but it needs to know what P(x, y) is. However, estimating
P(x,y) is usually not possible so that (19) is not very useful in practical usage.
The usual way is to approximate the actual risk by using the empirical risk:

Remp@) = 5= 3~ = £ i) (20)

This empirical risk is obtained by considering only a finite number of training
data. Looking for a model that fits the given dataset usually is not a good way
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to do. There always exists a model that can classify the training data perfectly
as long as there is no identical data points that have different labels. However
this model might overfit the training data and perform poorly on the unseen
data. There are some bounds governing the relation between the capacity of a
learning machine and its performance. It can be used for balancing the model
bias and model variance. Vapnik et al. [54] proposed a upper bound for R(«)
with probability 1 — 7 as follows:

R(Oé) < Remp(a) + \/h(log(Qm/h) + 1) — 10%(’7/4) , (21)

m

where 77 is between 0 and 1, m is the number of instances, h is a non-negative
integer called the Vapnik Chervonenkis (VC) dimension. The second term on
the right-hand side of (21) is called the VC confidence.

The upper bound in (21) gives a principle for choosing a learning model
for a given task. Thus given several different learning models and a fixed,
sufficiently small 7, choosing a model that minimizes the right-hand side is
equivalent to choosing a model that gives the lowest upper bound on the actual
risk. Note that the VC confidence is a monotonic increasing function of h. This
means that a complicated learning model may also have a high upper bound
on the actual risk. In general, for non zero empirical risk, one wants to choose
that learning model which minimizes the right-hand side of (21). This idea
of balancing the model complexity and empirical risk is considered in SVMs.
The objective functions of (6) and (7) can be interpreted as the upper bound
of actual risk in (21) [7, 54]. Basically, SVM defines a trade-off between the
quality of the separating hyperplane on the training data and the complexity
of the separating hyperplane. Higher complexity of the separating hyperplane
may cause overfitting and lead to poor generalization. The positive parameter
C which can be determined by a tuning procedure such as cross-validation,
plays the role of balancing this trade-off. We will discuss the issue in more
details in Section 5.

3 Variants of Support Vector Machines

Since the typical SVM was proposed for the first time in late 90’s, to deal with
various kinds of applications, many variants of SVM have been proposed. The
different formulations of SVM have their own approaches in dealing with data.
In this section, we will introduce some of them, as well as their properties and
applications.

3.1 Smooth Support Vector Machine

In contrast to the conventional SVM of (6), smooth support vector machine
(SSVM) [36] minimizes the square of the slack vector £. In addition, the SSVM
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prefers a solution with a small value of b (also in 2-norm). That leads to the
following minimization problem:

. 1 5 o C X,
— b — 4 22
I (L RO DT (22)
s.t. yi(WTxi +b)+&>1
& >0, fore=1,2,....,m.

As a solution of (22), £ is given by & = {1—y;(w "x;+b)}, for all i where the
plus function x4 is defined as zy = max{0, 2}. Thus, we can replace ; in (22)
by {1 —y;(w'x; + b)}.. It converts the problem (22) into an unconstrained
minimization problem as follows:

m

. 1 2 2 c T 2
i GV +0) 4 5 30 T k0l (2

Compared to (22), this formulation reduces the number of variables from
n+ 1+ m to n + 1; however, the objective function to be minimized is no
longer twice differentiable. In SSVM, we prefer a twice differentiable form so
that a fast Newton method can be applied. We approximate the plus function
x4 by a smooth p-function:

p(z,B) =x+ %log(l + 6_6“) , (24)

where 6 > 0 is the smooth parameter which controls the “steepness” of the
curve or how close it is to the original plus function = . By replacing the plus
function x, with a very accurate approximation p-function gives the SSVM
formulation:

m

1 9 C
. 1 b2 e 1—ui(w x; +b 2 25
w9+ 53w T 00 (@)
The objective function in problem (25) is strongly convex and infinitely dif-
ferentiable. Hence, it has a unique solution and can be solved by using a fast
Newton-Armijo algorithm (discussed in the implementation part, Section 4).
For the nonlinear case, this formulation can be extended to the nonlinear

version by utilizing the kernel trick as follows:

m

i3+ + 5 (1~ {3 wsh(xi ) + 51,87, (26)

i=1 j=1

. 1
min -
(u,b)eRm+1 2

where k(x;,x;) is a kernel function. The nonlinear SSVM classifier f(x) can
be expressed as follows:

Fx) =" ujk(x;,x) +b. (27)

uj;éO
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3.2 Reduced Smooth Support Vector Machine

In these days, very often we have classification or regression problems with
large-scale data, such as the data from network traffic, gene expressions, web
documents, etc. To solve large-scale problems by SVM, the full kernel matrix
will be very large, so it may not be appropriate to use the full matrix when
dealing with (26). In order to avoid facing such a large full matrix, we brought
in the reduced kernel technique [35]. The key idea of the reduced kernel tech-
nique is to randomly select a small portion of data and to generate a thin
rectangular kernel matrix, then to use this much smaller rectangular kernel
matrix to replace the full kernel matrix. In the process of replacing the full
kernel matrix by a reduced kernel, we use the Nystrom approximation [48, 56]
for the full kernel matrix:

K(A,A)~K(A,A)K(A,A)"'K(A,A), (28)

where Agxn is a subset of A and K(A,A) = Kuxm is a reduced kernel.
Thus, we have

KA, AJu~ K(A,A)K(A,A)'K(A,A)u =K(A,A)a, (29)

where @ € R™ is an approximated solution of u via the reduced kernel tech-
nique. By using the approximation, reduced SVM randomly selects a small
subset A to generate the basis functions B:

m

B={1}uU {k(-, a?")}i:1 .
The formulation of reduced SSVM, hence, is expressed as follows:

1. C & N N
min Sl + 6%+ 5 > p(l =y {7 ak(xi%;) + b}1.6)°  (30)
105 i=1 Jj=1

and its decision function is in the form
fl@) = ak(x,%;) +b. (31)

The reduced kernel method constructs a compressed model and cuts down
the computational cost from O(m3) to O(m3). It has been shown that the
solution of reduced kernel matrix approximates the solution of full kernel
matrix well [35].

3.3 Least Squares Support Vector Machine

The least squares support vector machine [51] considers the equality con-
straints which make the formulation of the classification problem in the sense
of least squares as follows:
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1 m
. 2 2
min —||wl||5 +C - 32
s, 3RO 06 (32)
st. & =1—yi(w'x;+b)fori=1,2,....m.
The same idea, called proximal support vector machine, is also proposed si-
multaneously in [22], with adding the square of the bias term b in the objective
function. With the least squares form, one can obtain the solution of the classi-

fication problem via solving a set of linear equations. Consider the Lagrangian
function of (32):

L(w b, &) = SIwlE+ O Y alys(w xi+h) ~ 1+6],  (33)

i=1 i=1

where «; € R are Lagrange multipliers. Setting the gradient of £ to zeros
gives the following Karush-Kuhn-Tucker optimality conditions:

W = Z QY X (34)
i=1

> aiyi=0

i=1

ai:C&;, ’i:l,...,m
yi(w'x;+b) —1+& =0,

which are equivalent to the following linear equations:

100 —ATT w 0
88001 O 2 stk )
Ay I 0 e’ 1
or, equivalently, - _
itz o = 1) )

where A = [x1y1; %002 i Xm¥ml, ¥ = [y15925 -3 ym], and 1= [ 155 1],
From (36), the nonlinear least squares SVM also can be extended via the inner
product form. That is, the nonlinear least squares SVM solves the following

linear equations:
0 -y bl o
b o] =[i] w

where K(A, A) is the kernel matrix. The (36) or (37) gives an analytic solution
to the classification problem via solving a system of linear equations. This
brings a lower computational cost by comparing with solving a conventional
SVM while obtaining a least squares SVM classifier.
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3.4 1-norm Support Vector Machine

The 1-norm support vector machine replaces the regularization term ||w]|3
in (6) by a ¢;-norm of w. The ¢;-norm regularization term is also called the
LASSO penalty [53]. It tends to shrink the coefficients w’s towards zeros in
particular for those coefficients corresponding to redundant noise features [57].
This nice feature will lead to a way of selecting the important attributes in
our prediction model. The formulation of 1-norm SVM is described as follows:

i C i 38
LIS IR BF: )

s.t. yi(WTxi—i—b) +&>1
& >0, fore=1,2,...,m.

The objective function of (38) is a piecewise linear convex function. We can
reformulate it as the following linear programming problem:

n m
e 2 s O & (39)
Jj=1 =1
s.t. yz‘(WTXi +b)+¢&>1
—s; <wj <4, forj=1,2,...,n,

& >0, fori=1,2,...,m,

where s; is the upper bound of the absolute value of w;. At the optimal
solution of (39) the sum of s; is equal to ||w]|;.

The 1-norm SVM can generate a very sparse solution w and lead to a
parsimonious model. In a linear SVM classifier, solution sparsity means that
the separating function f(x) = w ' x+b depends on very few input attributes.
This characteristic can significantly suppress the number of the nonzero coef-
ficients w’s, especially when there are many redundant noise features [23, 57].
Therefore the 1-norm SVM can be a very promising tool for variable selection.
In Section 6, we will use it to choose the important financial indices for our
bankruptcy prognosis model.

3.5 e-Support Vector Regression

In regression problems, the response y belongs to real numbers. We would
like to find a linear or nonlinear regression function, f(x), that tolerates a
small error in fitting the given dataset. It can be achieved by utilizing the
e-insensitive loss function that sets an e-insensitive “tube” around the data,
within which errors are discarded.

We start with the linear case, that is the regression function f(x) defined
as f(x) = w'x+b. The SVM minimization can be formulated as an uncon-
strained problem given by:
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*H 5+CY &, (40)
i=1

(w,b 5)GR"+1 2

where |&;|. = max{0,|wx; + b — y;| — ¢}, represents the fitting errors and
the positive control parameter C' here weights the tradeoff between the fitting
errors and the flatness of the linear regression function f(x). Similar to the
idea in SVM, the regularization term ||w||3 in (40) is also applied for improving
the generalization ability. To deal with the e-insensitive loss function in the
objective function of the above minimization problem, conventionally, it is
reformulated as a constrained minimization problem defined as follows:

1 9 i
3 C) &+& 41
(wb.£r ) CRnt1tam 2”WH2+ ;(f +&) (41)
s.t. WTXri-b—yi <e+&,
—wixi—bty <et§,
&, & >0fori=1,2,...,m
This formulation (41) is equivalent to the formulation (40) and its correspond-
ing dual form is

—o;)y; — € i i 42
w52, 2 (0~ a) Za + o) (12)
=0 (@i — i) (6 — o) (xi, ;)
i=1 j=1
s.t. Z(ﬁi—ui)zo,
=1
Ogai,diSC, fori:l,...,m.

From (42), one also can apply the kernel trick on this dual form of e-SVR
for the nonlinear extension. That is, (x;,x;) is directly replaced by a kernel
function k(x;,x;) as follows:

m
LR 2( i — )y — EZ (& + o) (43)
i—
m m
- Z(O‘z ;) (& — o)k (x4,%;)
i=1 j=1
m
s.t. Z(é&l - Oéi) = 0,
i=1
0<q;,q; <C, fori=1,...,m.

with the decision function f(x) = > (&; — a;)k(xi,x) +b.
i=1
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Similar to the smooth approach in SSVM, the formulation (40) can be
modified slightly as a smooth unconstrained minimization problem. Before
we derive the smooth approximation function, we show some interesting ob-
servations:

zfe = (z =€)y + (-2 —e) (44)
and
(x—e)y - (—x—¢e)y =0 forallz e Rand e > 0. (45)
Thus we have
22 =(z—-e)} +(—z—2)}. (46)

It is straightforward to replace |z|? by a very accurate smooth approximation
given by:
pi(z, B) = (p(x — &,8))* + (p(—z — &, 5))* . (47)

We use this approximation p2-function with smoothing parameter 3 to obtain
the smooth support vector regression (e-SSVR) [34]:

1
=(Iwli3 + %) + Zpgw x; +b—yi, ), (48)

min
(w,b)eRn+12 7
’L

where p?(w ' x; + b — y;, 3) € R. For the nonlinear case, this formulation can
be extended to the nonlinear e-SSVR by using the kernel trick as follows:

m

(||ll||2 +b2 Zpe ZU’J X]7XZ +b ywﬁ)a (49)

(u b)eRm+1 2

where k(x;,%;) is a kernel function. The nonlinear e-SSVR decision function
f(x) can be expressed as follows:

z) = Zuik(xj,x) +b. (50)

Note that the reduced kernel technique also can be applied to e-SSVR while
encountering a large scale regression problem.

4 Implementation of SVMs

The support vector machine, either in its primal formulation (6) or dual for-
mulation (8), is simply a standard convex quadratic program (for the nonlinear
SVM, the kernel function k(x, x) used in (12) has to satisfy Mercer’s condition
in order to keep the convezity of the objective function). The most straight-
forward way for solving it is to employ a standard quadratic programming
solver such as CPLEX [28], or using an interior point method for quadratic
programming [21]. Because of the simple structure of the dual formulation
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of either linear (8) or nonlinear (12) SVM, many SVM algorithms are oper-
ated in the dual space. However solving SVMs in the primal form can also be
efficient [36, 34, 35, 11], such as the approaches to solve SSVM, SSVR, and
RSVM which were introduced in the previous section. In the following, we
will introduce main methods in solving SVMs in their primal and dual forms.

4.1 SVMs Training in the Primal Form

The standard way to solve SVMs in the primal is reformulating (6) or (7) as
an unconstrained minimization problem:
i 1 2 m Cw
witin 2l + O iy Ly, W x+ ), (51)

with the loss function L(y, f(x)) = max(0,1—y; f(x))?. Note that the decision
function can be written as a linear combination of data points such as w =

m
> u;x;. Thus, we can rewrite the nonlinear form for SVMs in the primal by

7
utilizing kernel trick as follows

IWTKA, A)u+CY " Ly, Z;nzl uik(x;,x;) +b), (52)

(u,b)eRm+1 2
or in another slightly different form based on the generalized SVM [38]:

(o a sulu+ O3 Llys, 200 ujk(xi, ;) +b). (53)
For solving unconstrained minimization problems, Newton-like optimiza-
tion methods are widely used, so we only focus on solving the minimization
problems via Newton method here. The Newton method needs the objective
function to be twice differentiable to calculate the Hessian matrix. One way
is to replace the loss function by a twice differentiable approximated func-
tion. We take SSVM as an example to illustrate the idea. SSVM adopts the
quadratic loss and uses p-function to smooth the quadratic loss function as
follows:

m

. _C T 2, 1 2,32
i T(w,b) = 3 ;p({l —ui(wxi +0)} 8)° + S (Iwli3 +0%).

for the linear case; and for the nonlinear case, the function becomes:

m

min | W, b) = O p((1 -yl wsk(xi) 4 b3, + 2 (3 +02).

b)eRm+1 2
(u,b)e Py =

Once reformulating SVM as an unconstrained minimization problem with
twice differentiable objective function ¥(w,b) (or ¥(u,b)), Newton-Armijo
optimization method is applied to obtain the solution. The Armijo condition
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is applied here to avoid the divergence and oscillation in Newton method
where 7 is assigned with a small value. For the nonlinear case, one only needs
to replace the original data A by the kernel data K(A, A) or reduced kernel
data K(A, A) and simply obtains the solution without revising the algorithm.

4.2 SVMs Training in the Dual Form

The most popular strategy in solving SVM with dual form is the decomposi-
tion method [43, 29, 20, 24]. The decomposition method is designed to avoid
the access of the full kernel matrix while searching for the optimal solution.
This method iteratively selects a small subset of training data (the working
set) to define a quadratic programming subproblem. The solution of current
iteration is updated by solving the quadratic programming subproblem, de-
fined by a selected working set W, such that the objective function value of
the original quadratic program strictly decreases at every iteration. The de-
composition algorithm only updates a fixed size subset of multipliers «;, while
the others are kept constant. The goal is not to identify all of the active con-
straints in order to run the optimizer on all of them, but is rather to optimize
the global problem by only acting on a small subset of data at a time.

Suppose suppose o’ are the coeflicients of data belonging to the current
working set WW. One can reformulate (8) to a subproblem and solve it itera-
tively for updating « as follows:

1
Yoot 3 3 wagelal i) o)
ieB i,jEB
st. 0<a, <C forieWw,

D wiai+ Yy =0.

i€B igB

The critical issue of decomposition methods is selecting an appropriate work-
ing set. The sequential minimal optimization (SMO) [44] which is an extreme
case of the decomposition methods. It only selects a working set with small-
est size, two data points, at each iteration. The criterion of selecting these
two data points is based on the maximum violating pair scheme. Besides, this
smallest working size leads the subproblem to a single variable minimization
problem which has a analytic form of solution. Different strategies to select
the working set lead to different algorithms. Many methods of selecting a ap-
propriate working set has been proposed [29, 20, 24]. Some of them also been
well implemented, such as SVM'9"1 [29], and LIBSVM? [10]. The LIBSVM
provides an advanced working set selection scheme based on the information

1 SVMY 9" is available in http://svmlight.joachims.org/
2 LIBSVM is available in http://www.csie.ntu.edu.tw/~cjlin/libsvm
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of seconde order. Its efficiency in performance has attracted many people to
use in their applications.

In a nutshell, decomposition methods take the advantage of sparsity in
SVM to adjust the solution with a small minimization problem iteratively.
This strategy makes decomposition methods avoid to access the whole full
kernel in seeking the solution. On the other hand, the selection of working set
is a key factor for the computational cost. Different working sets and their
sizes lead to different rates of convergence. The convergence analysis has been
carried out in [9, 30].

5 Practical Issues and Their Solutions in SVMs

In this section, we discuss some practical issues in SVMs. The topics includ-
ing dealing with the multi-class classification, dealing with unbalanced data
distribution, and the strategy of model selection.

5.1 Multi-class Problems

In the previous sections, we only focus on the binary classification problem
in SVM. However, the labels might be drawn from several categories in the
real world. There are many methods have been proposed for dealing with the
multi-class problem. These methods can simply be divided into two types.
One handles the multi-class problem by dividing it into a series of binary
classification problems [54, 45, 17, 46]. The other formulates the multi-class
problem as a single optimization problem [54, 55, 16, 46].

In the approach of combining a series of binary classifiers, the popular
schemes are one-versus-rest, one-versus-one, directed acyclic graph (DAG) [45],
and error-correcting coding [19, 1, 17]. Now suppose we have k classes in the
data. In the one-versus-rest scheme, it creates a series of binary classifiers with
one of the labels to the rest so we have k binary classifiers for prediction. The
classification of new instances for one-versus-rest is using the winner-take-all
strategy. That is, we assign the label by the classifier with the highest output
value. On the other hand, one-versus-one scheme generates a series of binary
classifiers between every pair of classes. It means we need to construct (g)
classifiers in the one-versus-one scheme. The classification of one-versus-one is
usually associated with a simple voting strategy. In the voting strategy, every
classifier assigns the instance to one of the two classes and then new instances
will be classified to a certain class with most votes. The DAG strategy is a
variant of one-versus-one scheme. It also constructs (g) classifiers for each pair
of classes but uses a different prediction strategy. DAG places the (g) classi-
fiers in a directed acyclic graph and each path from the root to a leaf is an
evaluation path. In an evaluation path, a possible labeling is eliminated while
passing through a binary classification node. A predicted label is concluded
after finishing a evaluation path (see Fig. 3). In the error-correcting coding
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Fig. 3. An example of DAG approach in the multi-class problem

scheme, output coding for multi-class problems consists of two phases. In the
training phase, one need to construct a series of binary classifiers which are
based on different partitions of the classes. In the testing phase, the predic-
tions of the binary classifiers are combined to conclude a prediction of a testing
instance by using the output coding. Besides, the coding scheme is an issue
in the error-correcting coding. There are rich literatures discussing the coding
schemes [19, 1, 17]. The reader could get more details in these literatures.

The single machine approach for multi-class problem is first introduced
in [54, 55]. The idea behind this approach is still using the concept of maximum
margin in binary classification. The difference of single machine formulation is
that it considers all regularization terms together and pays the penalties for a
misclassified instance with a relative quantity evaluated by different models.
It means that each instance is associated with m(k —1) slack values if we have
m instances and k classes. For understanding the concept more, we display
the formulation of single machine approach in [55]:

o R Z lwi]| +C Z 3¢ (55)

Rn ¢
Wi Wi E i= 1J¢yL

&; > 0.

Except for this basic formulation, some further formulations have also been
proposed [54, 16, 46]. In a nutshell, the single machine approach could give
all the classifiers simultaneously in solving a single optimization problem.
However, the complicated formulation also brings a higher complexity for
solving it.

5.2 Unbalanced Problems

In reality, there might be only a small portion of instances belonging to a class
compared to the number of instances with the other label. Due to the small
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share in a sample that reflects reality, using SVMs on this kind of data may
tend to classify every instance as the class with the majority of the instances.
Such models are useless in practice. In order to deal with this problem, the
common ways start off with more balanced training than reality can provide.

One of these methods is a down-sampling strategy [13] and work with bal-
anced (50%/50%)-samples. The chosen bootstrap procedure repeatedly ran-
domly selects a fixed number of the majority instances from the training
set and adds the same number of the minority instances. One advantage of
down-sampling strategy is giving a lower cost in the training phase because
it removes lots of data points in the majority class. However, the random
choosing of the majority instances might cause a high variance of the model.

In order to avoid this unstable model building, a over-sampling scheme [25]
could also be applied to reach a balanced sample. The over-sampling scheme
duplicates the number of the minority instances a certain number of times. It
considers all the instances in hand and generates a more robust model than
the down-sampling scheme. Comparing the computational cost with down-
sampling strategy, over-sampling suffers a higher cost in the training phase
while increasing the size of training data.

To avoid the extra cost in the over-sampling strategy, one also can apply
different weights on the penalty term. In other words, one need to assign a
higher weight (higher C) on the minority class. This strategy of assigning
different weights gives the equivalent effect with the over-sampling strategy.
The benefit of assigning different weights is that it does not increase the size of
training data while achieving a balanced training. However, using this strategy
needs to revise the algorithm a little bit. In down-sampling and over-sampling
strategies, the thing that one needs to do is adjusting the proportions of
training data. Hence, down-sampling and over-sampling strategies are easier
to be applied for basic users in practical usage.

5.3 Model Selection of SVMs

Choosing a good parameter setting for a better generalization performance
of SVMs is the so called model selection problem. Model selection is usually
done by minimizing an estimate of generalization error. This problem can be
treated as finding the maximum (or minimum) of a function which is only
vaguely specified and has many local maxima (or minima).

Suppose the Gaussian kernel

K(x,z) = e x==l

is used where v is the width parameter. The nonlinear SVM needs to be
assigned two parameters C' and . The most common and reliable approach for
model selection is exhaustive grid search method. The exhaustive grid search
method forms a two dimension uniform grid (say p x p) of points in a pre-
specified search range and find a good combination (C, «). It is obvious that
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Fig. 4. The nested UD model selection with a 13-points UD at the first stage and
a 9-points UD at the second stage

the exhaustive grid search can not effectively perform the task of automatic
model selection due to its high computational cost.

Except for the exhaustive grid search method, many improved model selec-
tion methods have been proposed to reduce the number of trials in parameter
combinations [31, 12, 33, 5, 50, 26]. Here we focus on introducing the 2-stage
uniform design model selection [26] because of its good efficiency. The 2-stage
uniform design procedure first sets out a crude search for a highly likely can-
didate region of global optimum and then confines a finer second-stage search
therein. At the first stage, we use a 13-runs UD sampling pattern (see Fig.
3) in the appropriate search range proposed above. At the second stage, we
halve the search range for each parameter coordinate in the log-scale and let
the best point from the first stage be the center point of the new search box.
Then we use a 9-runs UD sampling pattern in the new range. Moreover, to
deal with large sized datasets, we combine a 9-runs and a 5-runs sampling pat-
tern at these two stages. The performance in [26] shows merits of the nested
UD model selection method. Besides, the method of nested UDs is not limited
to 2 stages and can be applied in a sequential manner and one may consider
a finer net of UDs to start with.

6 A Case Study for Bankruptcy Prognosis
To demonstrate the use of SVM, we focus on the problem of bankruptcy

prognosis as our case study. The studied data set is CreditReform where
we are given financial company information and the goal is to predict the
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Fig. 5. The distribution of solvent and insolvent companies across industries

possibility of bankruptcy for the companies. The study includes applying the
nonlinear SSVM with a reduced kernel, feature selection via 1-norm SVM,
conquering the unbalanced problem by over-sampling technique, and model
selection by the 2-stage nested uniform design method.

6.1 Data Description

The CreditReform database consists of 20,000 financially solvent and 1,000
insolvent German companies observed once in the period from 1997 to 2002.
Although the companies were randomly selected, the accounting data in 2001
and 2002 are the majority. Approximately 50% of the observations come from
this period. Figure 5 shows the distribution of solvent and insolvent companies
across different industries.

A company is described by a set of attributes that includes several balance
sheet and income statement items. The attributes include:

AD (Amortization and Depreciation)
AP (Accounts Payable)

AR (Account Receivable)

CA (Current Assets)

CASH (Cash and Cash Equivalents)
CL (Current Liabilities)

DEBT (Debt)

EBIT (Earnings before Interest and Tax)
EQUITY (Equity)

IDINV (Growth of Inventories)

IDL (Growth of Liabilities)

INTE (Interest Expense)

INV (Inventories)

ITGA (Intangible Assets)

LB (Lands and Buildings)
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NI (Net Income)

OI (Operating Income)

QA (Quick Assets)

SALE (Sales)

TA (Total Assets)

TL (Total Liabilities)

WC (Working Capital (=CA-CL))

The companies may appear in the database several times in different years;
however, each year of balance sheet information is treated as a single obser-
vation. The data of the insolvent companies were collected two years prior
to their insolvency. The company size is measured by its total assets. We
construct 28 ratios to condense the balance sheet information (see Table 1).
However, before dealing with the data set, some companies whose behavior is
very different from others (outliers) are ignored in order to make the dataset
more compact. The complete pre-processing procedure is described as follows:

1. We excluded companies whose total assets were not in the range of 10° to
107 euros. There are 967 insolvent companies remain and 15,834 solvent
companies remain.

2. In order to compute the accounting ratios AP/SALE, OI/TA, TL/TA,
CASH/TA, IDINV/INV, INV/SALE, EBIT/TA and NI/SALE, we have
removed companies with zero denominators (remaining insolvent: 816;
solvent 11,005, after the pre-processing in previous step).

3. We dropped outliers. That is, the insolvent companies with extreme values
of financial indices are removed (remaining insolvent: 811; solvent: 10,468).

After pre-processing, the dataset consists of 11,279 companies (811 insolvent
and 10,468 solvent). In all the following analysis, we focus on the revised
dataset.

6.2 The Procedure of Bankruptcy Prognosis with SVMs

We conduct the experiments in a scenario in which we train the SSVM bank-
ruptcy prognosis model from the data at hand and then use the trained SSVM
to predict the following year’s cases. This strategy simulates the real task for
analysts who may predict the future outcomes by using the data from past
years. The experiment setting is described in Table 2. The number of periods
used for the training set changes from one year (S1) to five years (S5) as time
goes by. All classifiers we adopt in the experiments are reduced SSVM with
Gaussian kernels. We need to determine two parameters, the best combination
of C and ~ for the kernels. In principle, the 2-D grid search will consume a lot
of time. In order to cut down the search time, we adopt the nested uniformed
design model selection method [26], introduced in Subsection 5.3 to search for
a good pair of parameters for the performance of our classification task.
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Table 1. The definition of accounting ratios used in the analysis

Variable Ratio Indicator for|Variable Ratio Indicator for
X1 NI/TA Profitability | X15 CASH/TA Liquidity
X2 NI/SALE Profitability | X16 CASH/CL Liquidity
X3 OI/TA Profitability | X17 QA/CL Liquidity
X4  OI/SALE Profitability | X18 CA/CL Liquidity
X5 EBIT/TA Profitability | X19 WC/TA Liquidity
X6 (EBIT+AD)/TA Profitability | X20 CL/TL Liquidity
X7 EBIT/SALE Profitability | X21 TA/SALE Activity
X8 EQUITY/TA Leverage X22 INV/SALE Activity
X9 E']f“g-llj';T(‘}YA_-IgSSAI-)I{ LB) Leverage X23 AR/SALE Activity

X10 CL/TA Leverage X24 AP/SALE Activity
X11 (CL-CASH)/TA Leverage X25 Log(TA) Size

X12 TL/TA Leverage X26 IDINV/INV Growth
X13 DEBT/TA Leverage X27 IDL/TL Growth
X14 EBIT/INTE Leverage X28 IDCASH/CASH Growth

Table 2. The prediction scenario of our experiments

Scenario Observation period of training set Observation period of testing set

S1 1997 1998
S2 1997-1998 1999
S3 1997-1999 2000
S4 1997-2000 2001
S5 1997-2001 2002

Selection of Accounting Ratios via 1-norm SVM

In principle, many possible combination of accounting ratios could be used as
explanatory variables in a bankruptcy prognosis model. Therefore, appropri-
ate performance measures are needed to gear the process of selecting the ratios
with the highest separating power. In [13] Accuracy Ratio (AR) and Condi-
tional Information Entropy Ratio (CIER) determine the selection procedure’s
outcome. It turned out that the ratio “accounts payable divided by sales”, X24
(AP/SALE), has the best performance values for a univariate SVM model.
The second selected variable was the one combined with X24 that had the
best performance of a bivariate SVM model. This is the analogue of forward
selection in linear regression modeling. If one keeps on adding new variables
one typically observes a declining change in improvement. This was also the
case in that work where the performance indicators started to decrease after
the model included eight variables. The described selection procedure is quiet
lengthy, since there are at least 216 accounting ratio combinations to be con-
sidered. We will not employ the procedure here but use the chosen set of 8
variables in [13] denoted as V1. Table 3 presents V1 in the first column.
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Table 3. Selected variables in V1 and V2 (the symbol “plus” means the common
variables in V1 and V2)

Variable Definition V1 V2
X2+ NI/SALE X X
X3+ OI/TA X X
X5+ EBIT/TA X X
X6 (EBIT+AD)/TA X
X8 EQUITY/TA X
X12  TL/TA x

X15%  CASH/TA X X
X22 INV/SALE X

X23  AR/SALE x
X247  AP/SALE
X26  IDINV/INV

S
"

Except for using V1, we also apply 1-norm SVM which will simplify the
selection procedure to select accounting ratios. The 1-norm SVM was applied
to the period from 1997 to 1999. We selected the variables according to the size
of the absolute values of the coefficients w from the solution of the 1-norm
SVM. We also select 8 variables out of 28. Table 3 displays the 8 selected
variables as V2. Note that five variables, X2, X3, X5, X15 and X24 are also in
the benchmark set V1. From Table 4 and Table 5, we can the performances
of V1 and V2 are quite similar while we need fewer efforts for extract V1.

Applying Over-sampling to Unbalanced Problems

The cleaned data set consists of around 10% of insolvent companies. Thus, the
sample is fairly unbalanced although the share of insolvent companies is higher
than in reality. In order to deal with this problem, insolvency prognosis models
usually start off with more balanced training and testing samples than reality
can provide. Here we use over-sampling and down-sampling [13] strategies,
to balance the size between the solvent and the insolvent companies. In the
experiments, the over-sampling scheme shows better results in the Type I
error rate but has slightly bigger total error rates (see Table 4 and see Table
5). It is also obvious, that in almost all models a longer training period works
in favor of accuracy of prediction. Clearly, the over-sampling schemes have
much smaller standard deviations in the Type I error rate, the Type II error
rate, and the total error rate than the down-sampling one. According to this
observation, we conclude that the over-sampling scheme will generate a more
robust model than the down-sampling scheme.
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Table 4. The results in percentage (%) of over-sampling for three variable sets
(Reduced SSVM with Gaussian kernel)

Set of  Scenario Type I Error Type II Error Total Error
accounting Rate Rate Rate
ratios mean std mean std mean std
S1  33.16 0.55 26.15 0.13 26.75 0.12
S2  31.58 0.01 29.10 0.07 29.35 0.07
V1 S3  28.11 0.73 26.73 0.16 26.83 0.16
S4  30.14 0.62 25.66 0.17 25.93 0.15
S5 2424 0.56 2344 0.13 23.48 0.13
S1 29.28 0.92 2720 0.24 27.38 0.23
S2 2820 0.29 30.18 0.18 29.98 0.16
V2 S3 2741 0.61 29.67 0.19 29.50 0.17
S4 2812 0.74 2832 0.19 28.31 0.15
S5 2391 0.62 24.99 0.10 24.94 0.10

Applying the Reduced Kernel Technique for Fast Computation

Over-sampling duplicates the number of insolvent companies a certain number
of times. In the experiments, we have to duplicate in each scenario the num-
ber of insolvent companies as many times as necessary to reach a balanced
sample. Note that in our over-sampling scheme every solvent and insolvent
companys information is utilized. This increases the computational burden
due to increasing the number of training instances. We employ the reduced
kernel technique in Section 3 to mediate this problem. Here the key idea for
choosing the reduced set A is extracting the same size of insolvent companies
from solvent companies. This leads to not only the balance both in the data
size and column basis bit but also the lower computational cost.

Summary

In analyzing CreditReform dataset for bankruptcy prognosis, we presented
the usage of SVMs in a real case. The results show the selection of accounting
ratios via 1-norm SVM can perform as well as the greedy search. The finance
indices selected by 1-norm SVM actually can represent the data well in bank-
ruptcy prognosis. The simple procedure of over-sampling strategy also helps
to overcome the unbalanced problem while down-sampling will cause a biased
model. In accelerating the training procedure, the reduced kernel technique is
performed. It helps to build a SVM model in an efficient way without sacrific-
ing the performance in prediction. Finally, the procedure of tuning parameters
in a model is usually a heavy work in analyzing data. A good model selection
method can help users to decease the long-winded tuning procedure, such
as the 2-stage uniform design method used in this case study. In a nutshell,
SVMs have been developed maturely. These practical usages presented here
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Table 5. The results in percentage (%) of down-sampling for three variable sets
(Reduced SSVM with Gaussian kernel)

Set of  Scenario Type I Error Type II Error Total Error
accounting Rate Rate Rate
ratios mean std mean std mean std
S1 3220 3.12 2898 1.70 29.26 1.46
S2 29.714 229 28.77 197 28.87 1.57
V1 S3  30.46 1.88 26.23 1.33 26.54 1.17
S4  31.55 1.52 23.89 0.97 24.37 0.87
S5 28.81 1.53 23.09 0.73 23.34 0.69
S1 2994 291 28.07 2.15 28.23 1.79
S2 2877 2.58 29.80 1.89 29.70 1.52
V2 S3 29.88 1.88 27.19 1.32 27.39 1.19
S4  29.06 1.68 26.26 1.00 26.43 0.86
S5 2692 1.94 2530 1.17 25.37 1.06

not only show the variability and ability of SVMs but also give the basic ideas
for analyzing data with SVMs.

7 Conclusion

The clear connection to statistic learning theory, efficient performance, and
simple usage of SVMs have attracted many researchers to investigate. Many
literatures have shown that SVMs are the state of the art in solving classifi-
cation and regression problems. This reputation has made SVMs be applied
in many fields, such as the quantitative finance field. This chapter presented
many topics of SVMs as well as a case study in bankruptcy prognosis to give a
guide for the usage of SVMs in quantitative finance filed. The possible appli-
cations with SVMs are various and potential in the quantitative finance field.
The aim is giving that ones can quickly have solutions in their applications
with SVMs while there are fertile materials in the wild.
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